Invariants
| Base field: | $\F_{463}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 - 6 x + 463 x^{2}$ |
| Frobenius angles: | $\pm0.455475605178$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-454}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $14$ |
| Isomorphism classes: | 14 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $458$ | $215260$ | $99260966$ | $45953704800$ | $21276727619738$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $458$ | $215260$ | $99260966$ | $45953704800$ | $21276727619738$ | $9851127770209180$ | $4561072099756594166$ | $2111776380505710115200$ | $977752464190838893832618$ | $452699390921237156058694300$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 14 curves (of which 0 are hyperelliptic):
- $y^2=x^3+187 x+187$
- $y^2=x^3+385 x+385$
- $y^2=x^3+240 x+257$
- $y^2=x^3+132 x+396$
- $y^2=x^3+10 x+10$
- $y^2=x^3+412 x+310$
- $y^2=x^3+334 x+76$
- $y^2=x^3+462 x+460$
- $y^2=x^3+211 x+170$
- $y^2=x^3+216 x+185$
- $y^2=x^3+420 x+420$
- $y^2=x^3+339 x+339$
- $y^2=x^3+86 x+86$
- $y^2=x^3+338 x+88$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{463}$.
Endomorphism algebra over $\F_{463}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-454}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.463.g | $2$ | (not in LMFDB) |