Invariants
| Base field: | $\F_{463}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 - 3 x + 463 x^{2}$ |
| Frobenius angles: | $\pm0.477792315970$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-1843}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $6$ |
| Isomorphism classes: | 6 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $461$ | $215287$ | $99256988$ | $45953656011$ | $21276730405271$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $461$ | $215287$ | $99256988$ | $45953656011$ | $21276730405271$ | $9851127818971504$ | $4561072098215368049$ | $2111776380467873611443$ | $977752464191559343433684$ | $452699390921262482344787407$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 6 curves (of which 0 are hyperelliptic):
- $y^2=x^3+286 x+286$
- $y^2=x^3+307 x+458$
- $y^2=x^3+47 x+141$
- $y^2=x^3+391 x+391$
- $y^2=x^3+453 x+433$
- $y^2=x^3+328 x+58$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{463}$.
Endomorphism algebra over $\F_{463}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-1843}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.463.d | $2$ | (not in LMFDB) |