Invariants
| Base field: | $\F_{463}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 - 27 x + 463 x^{2}$ |
| Frobenius angles: | $\pm0.284119851477$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-1123}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $5$ |
| Isomorphism classes: | 5 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $437$ | $214567$ | $99270668$ | $45954458091$ | $21276735835967$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $437$ | $214567$ | $99270668$ | $45954458091$ | $21276735835967$ | $9851127518558704$ | $4561072091942596457$ | $2111776380485697433203$ | $977752464193073832416804$ | $452699390921267238819879007$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 5 curves (of which 0 are hyperelliptic):
- $y^2=x^3+108 x+324$
- $y^2=x^3+289 x+404$
- $y^2=x^3+427 x+355$
- $y^2=x^3+323 x+323$
- $y^2=x^3+250 x+250$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{463}$.
Endomorphism algebra over $\F_{463}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-1123}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.463.bb | $2$ | (not in LMFDB) |