Invariants
| Base field: | $\F_{431}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 - 22 x + 431 x^{2}$ |
| Frobenius angles: | $\pm0.322247710563$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-310}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $8$ |
| Isomorphism classes: | 8 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $410$ | $186140$ | $80080790$ | $34507377760$ | $14872578630250$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $410$ | $186140$ | $80080790$ | $34507377760$ | $14872578630250$ | $6410082371223260$ | $2762745567202367590$ | $1190743340475670035840$ | $513210379739162260140410$ | $221193673667014265784033500$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 8 curves (of which 0 are hyperelliptic):
- $y^2=x^3+357 x+357$
- $y^2=x^3+15 x+15$
- $y^2=x^3+264 x+264$
- $y^2=x^3+296 x+348$
- $y^2=x^3+107 x+318$
- $y^2=x^3+211 x+211$
- $y^2=x^3+329 x+148$
- $y^2=x^3+159 x+159$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{431}$.
Endomorphism algebra over $\F_{431}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-310}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.431.w | $2$ | (not in LMFDB) |