Invariants
| Base field: | $\F_{431}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 - 14 x + 431 x^{2}$ |
| Frobenius angles: | $\pm0.390527534455$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-382}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $8$ |
| Isomorphism classes: | 8 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $418$ | $186428$ | $80078350$ | $34507077088$ | $14872573643378$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $418$ | $186428$ | $80078350$ | $34507077088$ | $14872573643378$ | $6410082452123900$ | $2762745571737460958$ | $1190743340522756473728$ | $513210379737732933323650$ | $221193673666963057211212028$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 8 curves (of which 0 are hyperelliptic):
- $y^2=x^3+77 x+108$
- $y^2=x^3+131 x+131$
- $y^2=x^3+428 x+428$
- $y^2=x^3+146 x+146$
- $y^2=x^3+355 x+330$
- $y^2=x^3+236 x+236$
- $y^2=x^3+398 x+200$
- $y^2=x^3+260 x+260$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{431}$.
Endomorphism algebra over $\F_{431}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-382}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.431.o | $2$ | (not in LMFDB) |