Invariants
| Base field: | $\F_{431}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 - 27 x + 431 x^{2}$ |
| Frobenius angles: | $\pm0.274654880019$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-995}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $8$ |
| Isomorphism classes: | 8 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $405$ | $185895$ | $80078220$ | $34507502955$ | $14872584261375$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $405$ | $185895$ | $80078220$ | $34507502955$ | $14872584261375$ | $6410082456100080$ | $2762745566283812745$ | $1190743340402747578995$ | $513210379737672945759780$ | $221193673667012298713817375$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 8 curves (of which 0 are hyperelliptic):
- $y^2=x^3+178 x+384$
- $y^2=x^3+403 x+235$
- $y^2=x^3+294 x+334$
- $y^2=x^3+142 x+132$
- $y^2=x^3+378 x+60$
- $y^2=x^3+262 x+262$
- $y^2=x^3+98 x+98$
- $y^2=x^3+25 x+25$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{431}$.
Endomorphism algebra over $\F_{431}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-995}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.431.bb | $2$ | (not in LMFDB) |