Invariants
| Base field: | $\F_{431}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 + 431 x^{2}$ |
| Frobenius angles: | $\pm0.5$ |
| Angle rank: | $0$ (numerical) |
| Number field: | \(\Q(\sqrt{-431}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $42$ |
| Isomorphism classes: | 42 |
This isogeny class is simple and geometrically simple, primitive, not ordinary, and supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is supersingular.
| $p$-rank: | $0$ |
| Slopes: | $[1/2, 1/2]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $432$ | $186624$ | $80062992$ | $34506777600$ | $14872581271152$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $432$ | $186624$ | $80062992$ | $34506777600$ | $14872581271152$ | $6410082687992064$ | $2762745569510280912$ | $1190743340389916774400$ | $513210379737799292308272$ | $221193673667021240147407104$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 42 curves (of which 0 are hyperelliptic):
- $y^2=x^3+286 x+286$
- $y^2=x^3+410 x+284$
- $y^2=x^3+72 x+73$
- $y^2=x^3+114 x+114$
- $y^2=x^3+369 x+369$
- $y^2=x^3+205 x+205$
- $y^2=x^3+67 x+38$
- $y^2=x^3+13 x+13$
- $y^2=x^3+317 x+317$
- $y^2=x^3+156 x+230$
- $y^2=x^3+206 x+149$
- $y^2=x^3+151 x+151$
- $y^2=x^3+103 x+290$
- $y^2=x^3+84 x+84$
- $y^2=x^3+76 x+76$
- $y^2=x^3+7 x$
- $y^2=x^3+290 x+306$
- $y^2=x^3+26 x+182$
- $y^2=x^3+237 x+366$
- $y^2=x^3+222 x+222$
- and 22 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{431^{2}}$.
Endomorphism algebra over $\F_{431}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-431}) \). |
| The base change of $A$ to $\F_{431^{2}}$ is the simple isogeny class 1.185761.bhe and its endomorphism algebra is the quaternion algebra over \(\Q\) ramified at $431$ and $\infty$. |
Base change
This is a primitive isogeny class.
Twists
This isogeny class has no twists.