Invariants
| Base field: | $\F_{409}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 + 8 x + 409 x^{2}$ |
| Frobenius angles: | $\pm0.563375524330$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-393}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $12$ |
| Isomorphism classes: | 12 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $418$ | $168036$ | $68408626$ | $27982699008$ | $11445025258018$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $418$ | $168036$ | $68408626$ | $27982699008$ | $11445025258018$ | $4681013058920484$ | $1914534317813406322$ | $783044537101051619328$ | $320265215674930758963874$ | $130988473210585689553429476$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 12 curves (of which 0 are hyperelliptic):
- $y^2=x^3+86 x+86$
- $y^2=x^3+40 x+40$
- $y^2=x^3+135 x+135$
- $y^2=x^3+301 x+62$
- $y^2=x^3+78 x+78$
- $y^2=x^3+388 x+388$
- $y^2=x^3+235 x+235$
- $y^2=x^3+233 x+404$
- $y^2=x^3+144 x+190$
- $y^2=x^3+49 x+343$
- $y^2=x^3+262 x+262$
- $y^2=x^3+108 x+347$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{409}$.
Endomorphism algebra over $\F_{409}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-393}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.409.ai | $2$ | (not in LMFDB) |