Invariants
| Base field: | $\F_{409}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 - 16 x + 409 x^{2}$ |
| Frobenius angles: | $\pm0.370545491461$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-345}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $8$ |
| Isomorphism classes: | 8 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $394$ | $167844$ | $68433466$ | $27982951680$ | $11445013526314$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $394$ | $167844$ | $68433466$ | $27982951680$ | $11445013526314$ | $4681012904117604$ | $1914534321341341786$ | $783044537155435729920$ | $320265215674387532531914$ | $130988473210581257691072804$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 8 curves (of which 0 are hyperelliptic):
- $y^2=x^3+170 x+170$
- $y^2=x^3+163 x+323$
- $y^2=x^3+269 x+269$
- $y^2=x^3+183 x+183$
- $y^2=x^3+209 x+236$
- $y^2=x^3+101 x+101$
- $y^2=x^3+35 x+245$
- $y^2=x^3+189 x+189$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{409}$.
Endomorphism algebra over $\F_{409}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-345}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.409.q | $2$ | (not in LMFDB) |