Invariants
| Base field: | $\F_{397}$ | 
| Dimension: | $1$ | 
| L-polynomial: | $1 + 6 x + 397 x^{2}$ | 
| Frobenius angles: | $\pm0.548109501029$ | 
| Angle rank: | $1$ (numerical) | 
| Number field: | \(\Q(\sqrt{-97}) \) | 
| Galois group: | $C_2$ | 
| Jacobians: | $12$ | 
| Isomorphism classes: | 12 | 
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ | 
| Slopes: | $[0, 1]$ | 
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | 
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $404$ | $158368$ | $62563844$ | $24840337536$ | $9861721269044$ | 
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ | 
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $404$ | $158368$ | $62563844$ | $24840337536$ | $9861721269044$ | $3915101710934176$ | $1554295346452866596$ | $617055253386767774208$ | $244970935602493764293588$ | $97253461433806885721764768$ | 
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 12 curves (of which 0 are hyperelliptic):
- $y^2=x^3+52 x+52$
- $y^2=x^3+102 x+204$
- $y^2=x^3+257 x+117$
- $y^2=x^3+138 x+138$
- $y^2=x^3+288 x+179$
- $y^2=x^3+211 x+25$
- $y^2=x^3+34 x+34$
- $y^2=x^3+286 x+286$
- $y^2=x^3+185 x+370$
- $y^2=x^3+112 x+224$
- $y^2=x^3+349 x+349$
- $y^2=x^3+372 x+372$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{397}$.
Endomorphism algebra over $\F_{397}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-97}) \). | 
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change | 
|---|---|---|
| 1.397.ag | $2$ | (not in LMFDB) | 
