Invariants
| Base field: | $\F_{397}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 - 25 x + 397 x^{2}$ |
| Frobenius angles: | $\pm0.284136688472$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-107}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $9$ |
| Isomorphism classes: | 9 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $373$ | $157779$ | $62584924$ | $24840883539$ | $9861718510633$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $373$ | $157779$ | $62584924$ | $24840883539$ | $9861718510633$ | $3915101558736576$ | $1554295346133631789$ | $617055253371855886275$ | $244970935601702749541068$ | $97253461433823039420684939$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 9 curves (of which 0 are hyperelliptic):
- $y^2=x^3+301 x+301$
- $y^2=x^3+265 x+265$
- $y^2=x^3+303 x+303$
- $y^2=x^3+104 x+208$
- $y^2=x^3+x+1$
- $y^2=x^3+151 x+151$
- $y^2=x^3+145 x+290$
- $y^2=x^3+265 x+133$
- $y^2=x^3+25 x+25$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{397}$.
Endomorphism algebra over $\F_{397}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-107}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.397.z | $2$ | (not in LMFDB) |