Invariants
| Base field: | $\F_{397}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 - 10 x + 397 x^{2}$ |
| Frobenius angles: | $\pm0.419259390957$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-93}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $12$ |
| Isomorphism classes: | 12 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $388$ | $158304$ | $62581684$ | $24840430464$ | $9861710966308$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $388$ | $158304$ | $62581684$ | $24840430464$ | $9861710966308$ | $3915101639930976$ | $1554295351066887124$ | $617055253426333171200$ | $244970935600776385650628$ | $97253461433789493013748064$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 12 curves (of which 0 are hyperelliptic):
- $y^2=x^3+245 x+93$
- $y^2=x^3+339 x+281$
- $y^2=x^3+161 x+161$
- $y^2=x^3+51 x+51$
- $y^2=x^3+96 x+192$
- $y^2=x^3+395 x+393$
- $y^2=x^3+355 x+313$
- $y^2=x^3+319 x+241$
- $y^2=x^3+223 x+223$
- $y^2=x^3+296 x+296$
- $y^2=x^3+360 x+360$
- $y^2=x^3+66 x+132$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{397}$.
Endomorphism algebra over $\F_{397}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-93}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.397.k | $2$ | (not in LMFDB) |