Invariants
| Base field: | $\F_{397}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 - 2 x + 397 x^{2}$ |
| Frobenius angles: | $\pm0.484017770379$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-11}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $30$ |
| Isomorphism classes: | 30 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $396$ | $158400$ | $62573148$ | $24840288000$ | $9861715401516$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $396$ | $158400$ | $62573148$ | $24840288000$ | $9861715401516$ | $3915101753323200$ | $1554295349483986428$ | $617055253358620032000$ | $244970935601093481004236$ | $97253461433823004079352000$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 30 curves (of which 0 are hyperelliptic):
- $y^2=x^3+48 x+96$
- $y^2=x^3+230 x+230$
- $y^2=x^3+289 x+289$
- $y^2=x^3+76 x+152$
- $y^2=x^3+37 x+37$
- $y^2=x^3+188 x+376$
- $y^2=x^3+349 x+301$
- $y^2=x^3+160 x+320$
- $y^2=x^3+156 x+312$
- $y^2=x^3+69 x+69$
- $y^2=x^3+149 x+149$
- $y^2=x^3+352 x+352$
- $y^2=x^3+375 x+375$
- $y^2=x^3+4 x+4$
- $y^2=x^3+157 x+157$
- $y^2=x^3+6 x+12$
- $y^2=x^3+39 x+78$
- $y^2=x^3+266 x+266$
- $y^2=x^3+386 x+386$
- $y^2=x^3+389 x+389$
- $y^2=x^3+354 x+354$
- $y^2=x^3+62 x+62$
- $y^2=x^3+305 x+213$
- $y^2=x^3+180 x+360$
- $y^2=x^3+373 x+349$
- $y^2=x^3+58 x+116$
- $y^2=x^3+131 x+262$
- $y^2=x^3+388 x+388$
- $y^2=x^3+245 x+245$
- $y^2=x^3+373 x+373$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{397}$.
Endomorphism algebra over $\F_{397}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-11}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.397.c | $2$ | (not in LMFDB) |