Invariants
| Base field: | $\F_{383}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 - 19 x + 383 x^{2}$ |
| Frobenius angles: | $\pm0.338664037262$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-1171}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $7$ |
| Isomorphism classes: | 7 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $365$ | $147095$ | $56196860$ | $21517792075$ | $8241261545575$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $365$ | $147095$ | $56196860$ | $21517792075$ | $8241261545575$ | $3156404315083760$ | $1208902894626117265$ | $463009809001016250675$ | $177332756838147796052660$ | $67918445868697440048344975$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 7 curves (of which 0 are hyperelliptic):
- $y^2=x^3+252 x+252$
- $y^2=x^3+218 x+324$
- $y^2=x^3+163 x+163$
- $y^2=x^3+364 x+364$
- $y^2=x^3+174 x+174$
- $y^2=x^3+224 x+354$
- $y^2=x^3+182 x+144$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{383}$.
Endomorphism algebra over $\F_{383}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-1171}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.383.t | $2$ | (not in LMFDB) |