Invariants
| Base field: | $\F_{383}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 - 16 x + 383 x^{2}$ |
| Frobenius angles: | $\pm0.365954021716$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-319}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $20$ |
| Isomorphism classes: | 20 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $368$ | $147200$ | $56196176$ | $21517696000$ | $8241259882288$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $368$ | $147200$ | $56196176$ | $21517696000$ | $8241259882288$ | $3156404335097600$ | $1208902895918768656$ | $463009809016641024000$ | $177332756837823797562608$ | $67918445868683773775456000$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 20 curves (of which 0 are hyperelliptic):
- $y^2=x^3+346 x+198$
- $y^2=x^3+5 x+5$
- $y^2=x^3+29 x+145$
- $y^2=x^3+256 x+256$
- $y^2=x^3+68 x+68$
- $y^2=x^3+119 x+119$
- $y^2=x^3+103 x+132$
- $y^2=x^3+221 x+221$
- $y^2=x^3+114 x+187$
- $y^2=x^3+85 x+85$
- $y^2=x^3+375 x+343$
- $y^2=x^3+242 x+242$
- $y^2=x^3+187 x+169$
- $y^2=x^3+289 x+289$
- $y^2=x^3+54 x+54$
- $y^2=x^3+313 x+33$
- $y^2=x^3+27 x+135$
- $y^2=x^3+347 x+203$
- $y^2=x^3+115 x+115$
- $y^2=x^3+251 x+106$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{383}$.
Endomorphism algebra over $\F_{383}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-319}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.383.q | $2$ | (not in LMFDB) |