Invariants
| Base field: | $\F_{383}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 - 33 x + 383 x^{2}$ |
| Frobenius angles: | $\pm0.180721858648$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-443}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $5$ |
| Isomorphism classes: | 5 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $351$ | $146367$ | $56183868$ | $21517851771$ | $8241270302421$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $351$ | $146367$ | $56183868$ | $21517851771$ | $8241270302421$ | $3156404535324144$ | $1208902896975019779$ | $463009808982008924883$ | $177332756836989168414324$ | $67918445868678142516760007$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 5 curves (of which 0 are hyperelliptic):
- $y^2=x^3+186 x+164$
- $y^2=x^3+81 x+81$
- $y^2=x^3+323 x+323$
- $y^2=x^3+129 x+129$
- $y^2=x^3+254 x+121$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{383}$.
Endomorphism algebra over $\F_{383}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-443}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.383.bh | $2$ | (not in LMFDB) |