Invariants
| Base field: | $\F_{379}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 + 6 x + 379 x^{2}$ |
| Frobenius angles: | $\pm0.549247681089$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-370}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $12$ |
| Isomorphism classes: | 12 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $386$ | $144364$ | $54433334$ | $20632502880$ | $7819811185586$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $386$ | $144364$ | $54433334$ | $20632502880$ | $7819811185586$ | $2963707023564364$ | $1123244935332233414$ | $425709831187086145920$ | $161344026025809523411106$ | $61149385863482537818535404$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 12 curves (of which 0 are hyperelliptic):
- $y^2=x^3+36 x+36$
- $y^2=x^3+146 x+146$
- $y^2=x^3+7 x+14$
- $y^2=x^3+56 x+56$
- $y^2=x^3+345 x+345$
- $y^2=x^3+121 x+242$
- $y^2=x^3+274 x+169$
- $y^2=x^3+59 x+118$
- $y^2=x^3+37 x+74$
- $y^2=x^3+16 x+16$
- $y^2=x^3+317 x+255$
- $y^2=x^3+208 x+208$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{379}$.
Endomorphism algebra over $\F_{379}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-370}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.379.ag | $2$ | (not in LMFDB) |