Invariants
| Base field: | $\F_{379}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 - 9 x + 379 x^{2}$ |
| Frobenius angles: | $\pm0.425751358314$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-1435}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $4$ |
| Isomorphism classes: | 4 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $371$ | $144319$ | $54449444$ | $20632565835$ | $7819802136461$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $371$ | $144319$ | $54449444$ | $20632565835$ | $7819802136461$ | $2963706976877584$ | $1123244939320280399$ | $425709831212586005715$ | $161344026024325180408316$ | $61149385863471373433419279$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 4 curves (of which 0 are hyperelliptic):
- $y^2=x^3+123 x+123$
- $y^2=x^3+369 x+359$
- $y^2=x^3+327 x+275$
- $y^2=x^3+135 x+270$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{379}$.
Endomorphism algebra over $\F_{379}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-1435}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.379.j | $2$ | (not in LMFDB) |