Invariants
| Base field: | $\F_{379}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 - 26 x + 379 x^{2}$ |
| Frobenius angles: | $\pm0.267251049161$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-210}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $8$ |
| Isomorphism classes: | 8 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $354$ | $143724$ | $54451926$ | $20633017440$ | $7819810029714$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $354$ | $143724$ | $54451926$ | $20633017440$ | $7819810029714$ | $2963706923539404$ | $1123244935257360486$ | $425709831163130290560$ | $161344026024783321219714$ | $61149385863490235348119404$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 8 curves (of which 0 are hyperelliptic):
- $y^2=x^3+195 x+195$
- $y^2=x^3+127 x+127$
- $y^2=x^3+185 x+185$
- $y^2=x^3+146 x+292$
- $y^2=x^3+203 x+203$
- $y^2=x^3+199 x+19$
- $y^2=x^3+247 x+247$
- $y^2=x^3+377 x+375$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{379}$.
Endomorphism algebra over $\F_{379}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-210}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.379.ba | $2$ | (not in LMFDB) |