Invariants
| Base field: | $\F_{373}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 - 23 x + 373 x^{2}$ |
| Frobenius angles: | $\pm0.296974806244$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-107}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $9$ |
| Isomorphism classes: | 9 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $351$ | $139347$ | $51908688$ | $19357109811$ | $7220115988371$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $351$ | $139347$ | $51908688$ | $19357109811$ | $7220115988371$ | $2693103088089024$ | $1004527479886120359$ | $374688750707676657603$ | $139758904019842144646544$ | $52130071199271443880466107$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 9 curves (of which 0 are hyperelliptic):
- $y^2=x^3+120 x+120$
- $y^2=x^3+362 x+362$
- $y^2=x^3+152 x+304$
- $y^2=x^3+209 x+45$
- $y^2=x^3+207 x+207$
- $y^2=x^3+126 x+252$
- $y^2=x^3+353 x+333$
- $y^2=x^3+349 x+325$
- $y^2=x^3+306 x+239$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{373}$.
Endomorphism algebra over $\F_{373}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-107}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.373.x | $2$ | (not in LMFDB) |