Invariants
| Base field: | $\F_{373}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 - 17 x + 373 x^{2}$ |
| Frobenius angles: | $\pm0.354938269793$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-1203}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $6$ |
| Isomorphism classes: | 6 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $357$ | $139587$ | $51909228$ | $19356948051$ | $7220111650017$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $357$ | $139587$ | $51909228$ | $19356948051$ | $7220111650017$ | $2693103073141824$ | $1004527481732351997$ | $374688750756298154883$ | $139758904020068417795004$ | $52130071199254837529024907$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 6 curves (of which 0 are hyperelliptic):
- $y^2=x^3+339 x+305$
- $y^2=x^3+3 x+3$
- $y^2=x^3+356 x+339$
- $y^2=x^3+28 x+56$
- $y^2=x^3+334 x+295$
- $y^2=x^3+37 x+74$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{373}$.
Endomorphism algebra over $\F_{373}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-1203}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.373.r | $2$ | (not in LMFDB) |