Invariants
| Base field: | $\F_{373}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 - 38 x + 373 x^{2}$ |
| Frobenius angles: | $\pm0.0574041060636$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-3}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $4$ |
| Isomorphism classes: | 4 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $336$ | $138432$ | $51882768$ | $19356669696$ | $7220112399696$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $336$ | $138432$ | $51882768$ | $19356669696$ | $7220112399696$ | $2693103119711424$ | $1004527481221027344$ | $374688750717457333248$ | $139758904019495009776464$ | $52130071199260397504586432$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 4 curves (of which 0 are hyperelliptic):
- $y^2=x^3+80 x+160$
- $y^2=x^3+242 x+111$
- $y^2=x^3+352 x+331$
- $y^2=x^3+1$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{373}$.
Endomorphism algebra over $\F_{373}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}) \). |
Base change
This is a primitive isogeny class.