Properties

Label 1.373.abm
Base field $\F_{373}$
Dimension $1$
$p$-rank $1$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{373}$
Dimension:  $1$
L-polynomial:  $1 - 38 x + 373 x^{2}$
Frobenius angles:  $\pm0.0574041060636$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-3}) \)
Galois group:  $C_2$
Jacobians:  $4$
Isomorphism classes:  4

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $336$ $138432$ $51882768$ $19356669696$ $7220112399696$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $336$ $138432$ $51882768$ $19356669696$ $7220112399696$ $2693103119711424$ $1004527481221027344$ $374688750717457333248$ $139758904019495009776464$ $52130071199260397504586432$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 4 curves (of which 0 are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{373}$.

Endomorphism algebra over $\F_{373}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}) \).

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
1.373.bm$2$(not in LMFDB)
1.373.n$3$(not in LMFDB)
1.373.z$3$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
1.373.bm$2$(not in LMFDB)
1.373.n$3$(not in LMFDB)
1.373.z$3$(not in LMFDB)
1.373.az$6$(not in LMFDB)
1.373.an$6$(not in LMFDB)