Properties

Label 1.373.abi
Base field $\F_{373}$
Dimension $1$
$p$-rank $1$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{373}$
Dimension:  $1$
L-polynomial:  $1 - 34 x + 373 x^{2}$
Frobenius angles:  $\pm0.157390476300$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-21}) \)
Galois group:  $C_2$
Jacobians:  $12$
Isomorphism classes:  12

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $340$ $138720$ $51893860$ $19356988800$ $7220119947700$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $340$ $138720$ $51893860$ $19356988800$ $7220119947700$ $2693103270651360$ $1004527483732508740$ $374688750748980979200$ $139758904019649809872660$ $52130071199253746143077600$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 12 curves (of which 0 are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{373}$.

Endomorphism algebra over $\F_{373}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-21}) \).

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
1.373.bi$2$(not in LMFDB)