Invariants
| Base field: | $\F_{19^{2}}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 - 9 x + 361 x^{2}$ |
| Frobenius angles: | $\pm0.423887591731$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-1363}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $6$ |
| Isomorphism classes: | 6 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $353$ | $130963$ | $47054900$ | $16983412803$ | $6131061650153$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $353$ | $130963$ | $47054900$ | $16983412803$ | $6131061650153$ | $2213314931833600$ | $799006687561152353$ | $288441413579016536643$ | $104127350297371845022100$ | $37589973457536989896564003$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 6 curves (of which 0 are hyperelliptic):
- $y^2=x^3+a^{244} x+a^{245}$
- $y^2=x^3+6 x+a^{281}$
- $y^2=x^3+a^{297} x+a^{297}$
- $y^2=x^3+a^{25} x+a^{25}$
- $y^2=x^3+a^{115} x+a^{115}$
- $y^2=x^3+a^{243} x+a^{243}$
where $a$ is a root of the Conway polynomial.
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{19^{2}}$.
Endomorphism algebra over $\F_{19^{2}}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-1363}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.361.j | $2$ | (not in LMFDB) |