Invariants
| Base field: | $\F_{19^{2}}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 - 27 x + 361 x^{2}$ |
| Frobenius angles: | $\pm0.248456922360$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-715}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $4$ |
| Isomorphism classes: | 4 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $335$ | $130315$ | $47055440$ | $16983823635$ | $6131069843375$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $335$ | $130315$ | $47055440$ | $16983823635$ | $6131069843375$ | $2213314921802560$ | $799006684562375015$ | $288441413533679582115$ | $104127350297435422510160$ | $37589973457545363992132875$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 4 curves (of which 0 are hyperelliptic):
- $y^2=x^3+a^{339} x+a^{339}$
- $y^2=x^3+a^{321} x+a^{321}$
- $y^2=x^3+a^{73} x+a^{73}$
- $y^2=x^3+a^{307} x+a^{307}$
where $a$ is a root of the Conway polynomial.
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{19^{2}}$.
Endomorphism algebra over $\F_{19^{2}}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-715}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.361.bb | $2$ | (not in LMFDB) |