Invariants
| Base field: | $\F_{349}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 + 6 x + 349 x^{2}$ |
| Frobenius angles: | $\pm0.551338499210$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-85}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $12$ |
| Isomorphism classes: | 12 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $356$ | $122464$ | $42502484$ | $14835288960$ | $5177587061636$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $356$ | $122464$ | $42502484$ | $14835288960$ | $5177587061636$ | $1806976786306144$ | $630634880156055284$ | $220091573667325386240$ | $76811959213313798472356$ | $26807373765254003364529504$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 12 curves (of which 0 are hyperelliptic):
- $y^2=x^3+285 x+221$
- $y^2=x^3+13 x+13$
- $y^2=x^3+116 x+232$
- $y^2=x^3+167 x+167$
- $y^2=x^3+25 x+25$
- $y^2=x^3+161 x+322$
- $y^2=x^3+283 x+283$
- $y^2=x^3+305 x+305$
- $y^2=x^3+216 x+216$
- $y^2=x^3+321 x+293$
- $y^2=x^3+276 x+203$
- $y^2=x^3+312 x+275$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{349}$.
Endomorphism algebra over $\F_{349}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-85}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.349.ag | $2$ | (not in LMFDB) |