Properties

Label 1.349.ay
Base field $\F_{349}$
Dimension $1$
$p$-rank $1$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{349}$
Dimension:  $1$
L-polynomial:  $1 - 24 x + 349 x^{2}$
Frobenius angles:  $\pm0.277961534775$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-205}) \)
Galois group:  $C_2$
Jacobians:  $8$
Isomorphism classes:  8

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $326$ $121924$ $42519854$ $14835712320$ $5177585320886$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $326$ $121924$ $42519854$ $14835712320$ $5177585320886$ $1806976695322084$ $630634880026581854$ $220091573652898970880$ $76811959212766314501926$ $26807373765262409484576004$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 8 curves (of which 0 are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{349}$.

Endomorphism algebra over $\F_{349}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-205}) \).

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
1.349.y$2$(not in LMFDB)