Properties

Label 1.349.abj
Base field $\F_{349}$
Dimension $1$
$p$-rank $1$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{349}$
Dimension:  $1$
L-polynomial:  $1 - 35 x + 349 x^{2}$
Frobenius angles:  $\pm0.113814939953$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-19}) \)
Galois group:  $C_2$
Jacobians:  $5$
Isomorphism classes:  5

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $315$ $121275$ $42502320$ $14835449475$ $5177584756575$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $315$ $121275$ $42502320$ $14835449475$ $5177584756575$ $1806976784289600$ $630634882866992955$ $220091573704046242275$ $76811959213316115006960$ $26807373765263833783531875$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 5 curves (of which 0 are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{349}$.

Endomorphism algebra over $\F_{349}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-19}) \).

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
1.349.bj$2$(not in LMFDB)