Invariants
| Base field: | $\F_{347}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 - 20 x + 347 x^{2}$ |
| Frobenius angles: | $\pm0.319622357604$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-247}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $12$ |
| Isomorphism classes: | 12 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $328$ | $120704$ | $41794744$ | $14498481664$ | $5030918205608$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $328$ | $120704$ | $41794744$ | $14498481664$ | $5030918205608$ | $1745729008789376$ | $605767992940002584$ | $210201493952151705600$ | $72939918400105196986888$ | $25310151684671190586504064$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 12 curves (of which 0 are hyperelliptic):
- $y^2=x^3+81 x+81$
- $y^2=x^3+126 x+252$
- $y^2=x^3+99 x+198$
- $y^2=x^3+148 x+296$
- $y^2=x^3+202 x+57$
- $y^2=x^3+112 x+112$
- $y^2=x^3+175 x+175$
- $y^2=x^3+291 x+291$
- $y^2=x^3+310 x+310$
- $y^2=x^3+62 x+62$
- $y^2=x^3+344 x+344$
- $y^2=x^3+156 x+312$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{347}$.
Endomorphism algebra over $\F_{347}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-247}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.347.u | $2$ | (not in LMFDB) |