Invariants
| Base field: | $\F_{347}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 - 13 x + 347 x^{2}$ |
| Frobenius angles: | $\pm0.386542280634$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-1219}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $6$ |
| Isomorphism classes: | 6 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $335$ | $120935$ | $41793260$ | $14498292475$ | $5030915180425$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $335$ | $120935$ | $41793260$ | $14498292475$ | $5030915180425$ | $1745729044636880$ | $605767995021278515$ | $210201493974773980275$ | $72939918399640943841140$ | $25310151684653804911231175$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 6 curves (of which 0 are hyperelliptic):
- $y^2=x^3+163 x+326$
- $y^2=x^3+334 x+334$
- $y^2=x^3+173 x+346$
- $y^2=x^3+326 x+305$
- $y^2=x^3+316 x+285$
- $y^2=x^3+187 x+27$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{347}$.
Endomorphism algebra over $\F_{347}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-1219}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.347.n | $2$ | (not in LMFDB) |