Invariants
| Base field: | $\F_{347}$ | 
| Dimension: | $1$ | 
| L-polynomial: | $1 - 11 x + 347 x^{2}$ | 
| Frobenius angles: | $\pm0.404595238373$ | 
| Angle rank: | $1$ (numerical) | 
| Number field: | \(\Q(\sqrt{-1267}) \) | 
| Galois group: | $C_2$ | 
| Jacobians: | $6$ | 
| Isomorphism classes: | 6 | 
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ | 
| Slopes: | $[0, 1]$ | 
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | 
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $337$ | $120983$ | $41792044$ | $14498239771$ | $5030915092247$ | 
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ | 
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $337$ | $120983$ | $41792044$ | $14498239771$ | $5030915092247$ | $1745729070727376$ | $605767995428753837$ | $210201493968327332403$ | $72939918399373066523188$ | $25310151684653023623817943$ | 
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 6 curves (of which 0 are hyperelliptic):
- $y^2=x^3+144 x+288$
- $y^2=x^3+164 x+164$
- $y^2=x^3+42 x+42$
- $y^2=x^3+297 x+297$
- $y^2=x^3+150 x+150$
- $y^2=x^3+220 x+93$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{347}$.
Endomorphism algebra over $\F_{347}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-1267}) \). | 
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change | 
|---|---|---|
| 1.347.l | $2$ | (not in LMFDB) | 
