Invariants
| Base field: | $\F_{337}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 - 17 x + 337 x^{2}$ |
| Frobenius angles: | $\pm0.346764188377$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-1059}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $6$ |
| Isomorphism classes: | 6 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $321$ | $113955$ | $38285028$ | $12897996675$ | $4346595490641$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $321$ | $113955$ | $38285028$ | $12897996675$ | $4346595490641$ | $1464803548093440$ | $493638820363124673$ | $166356282589087827075$ | $56062067226367800297636$ | $18892916655138614252206275$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 6 curves (of which 0 are hyperelliptic):
- $y^2=x^3+143 x+143$
- $y^2=x^3+16 x+16$
- $y^2=x^3+293 x+117$
- $y^2=x^3+272 x+272$
- $y^2=x^3+201 x+331$
- $y^2=x^3+139 x+21$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{337}$.
Endomorphism algebra over $\F_{337}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-1059}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.337.r | $2$ | (not in LMFDB) |