Properties

Label 1.337.aq
Base field $\F_{337}$
Dimension $1$
$p$-rank $1$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{337}$
Dimension:  $1$
L-polynomial:  $1 - 16 x + 337 x^{2}$
Frobenius angles:  $\pm0.356469825489$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-273}) \)
Galois group:  $C_2$
Jacobians:  $8$
Isomorphism classes:  8

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $322$ $113988$ $38284834$ $12897970176$ $4346595053122$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $322$ $113988$ $38284834$ $12897970176$ $4346595053122$ $1464803552818116$ $493638820660268962$ $166356282592567861248$ $56062067226303774645058$ $18892916655135977258252868$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 8 curves (of which 0 are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{337}$.

Endomorphism algebra over $\F_{337}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-273}) \).

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
1.337.q$2$(not in LMFDB)