Invariants
| Base field: | $\F_{337}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 - 16 x + 337 x^{2}$ |
| Frobenius angles: | $\pm0.356469825489$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-273}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $8$ |
| Isomorphism classes: | 8 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $322$ | $113988$ | $38284834$ | $12897970176$ | $4346595053122$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $322$ | $113988$ | $38284834$ | $12897970176$ | $4346595053122$ | $1464803552818116$ | $493638820660268962$ | $166356282592567861248$ | $56062067226303774645058$ | $18892916655135977258252868$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 8 curves (of which 0 are hyperelliptic):
- $y^2=x^3+220 x+89$
- $y^2=x^3+268 x+329$
- $y^2=x^3+282 x+62$
- $y^2=x^3+68 x+68$
- $y^2=x^3+229 x+229$
- $y^2=x^3+307 x+307$
- $y^2=x^3+241 x+241$
- $y^2=x^3+258 x+279$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{337}$.
Endomorphism algebra over $\F_{337}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-273}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.337.q | $2$ | (not in LMFDB) |