Invariants
| Base field: | $\F_{331}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 - 26 x + 331 x^{2}$ |
| Frobenius angles: | $\pm0.246633934556$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-2}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $9$ |
| Isomorphism classes: | 9 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $306$ | $109548$ | $36272934$ | $12003831648$ | $3973198774626$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $306$ | $109548$ | $36272934$ | $12003831648$ | $3973198774626$ | $1315127817924300$ | $435307305349228086$ | $144086718331831655808$ | $47692703775417453850194$ | $15786284949773818294792428$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 9 curves (of which 0 are hyperelliptic):
- $y^2=x^3+301 x+271$
- $y^2=x^3+99 x+198$
- $y^2=x^3+54 x+108$
- $y^2=x^3+323 x+315$
- $y^2=x^3+194 x+194$
- $y^2=x^3+206 x+81$
- $y^2=x^3+178 x+178$
- $y^2=x^3+85 x+85$
- $y^2=x^3+198 x+65$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{331}$.
Endomorphism algebra over $\F_{331}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-2}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.331.ba | $2$ | (not in LMFDB) |