Invariants
| Base field: | $\F_{311}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 + 7 x + 311 x^{2}$ |
| Frobenius angles: | $\pm0.563596197264$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-1195}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $8$ |
| Isomorphism classes: | 8 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $319$ | $97295$ | $30074044$ | $9354816955$ | $2909392891229$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $319$ | $97295$ | $30074044$ | $9354816955$ | $2909392891229$ | $904820318882480$ | $281399111325912899$ | $87515123947944690195$ | $27217203547971971538004$ | $8464550303316897760862375$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 8 curves (of which 0 are hyperelliptic):
- $y^2=x^3+181 x+125$
- $y^2=x^3+217 x+210$
- $y^2=x^3+112 x+112$
- $y^2=x^3+296 x+146$
- $y^2=x^3+286 x+286$
- $y^2=x^3+247 x+247$
- $y^2=x^3+170 x+4$
- $y^2=x^3+187 x+191$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{311}$.
Endomorphism algebra over $\F_{311}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-1195}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.311.ah | $2$ | (not in LMFDB) |