Invariants
| Base field: | $\F_{311}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 - 18 x + 311 x^{2}$ |
| Frobenius angles: | $\pm0.329518380815$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-230}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $20$ |
| Isomorphism classes: | 20 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $294$ | $97020$ | $30091194$ | $9355056480$ | $2909388496854$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $294$ | $97020$ | $30091194$ | $9355056480$ | $2909388496854$ | $904820237008380$ | $281399111765557674$ | $87515123955190081920$ | $27217203547978544086854$ | $8464550303322799314205500$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 20 curves (of which 0 are hyperelliptic):
- $y^2=x^3+211 x+211$
- $y^2=x^3+298 x+168$
- $y^2=x^3+246 x+246$
- $y^2=x^3+184 x+184$
- $y^2=x^3+38 x+38$
- $y^2=x^3+264 x+105$
- $y^2=x^3+274 x+215$
- $y^2=x^3+188 x+188$
- $y^2=x^3+5 x+5$
- $y^2=x^3+71 x+159$
- $y^2=x^3+139 x+285$
- $y^2=x^3+300 x+300$
- $y^2=x^3+199 x+199$
- $y^2=x^3+92 x+92$
- $y^2=x^3+210 x+133$
- $y^2=x^3+239 x+141$
- $y^2=x^3+305 x+305$
- $y^2=x^3+177 x+177$
- $y^2=x^3+250 x+250$
- $y^2=x^3+218 x+221$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{311}$.
Endomorphism algebra over $\F_{311}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-230}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.311.s | $2$ | (not in LMFDB) |