Invariants
| Base field: | $\F_{311}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 - 15 x + 311 x^{2}$ |
| Frobenius angles: | $\pm0.360173519252$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-1019}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $13$ |
| Isomorphism classes: | 13 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $297$ | $97119$ | $30090852$ | $9354987675$ | $2909387257227$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $297$ | $97119$ | $30090852$ | $9354987675$ | $2909387257227$ | $904820244389424$ | $281399112441812277$ | $87515123964855189075$ | $27217203547889923134732$ | $8464550303317480046237079$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 13 curves (of which 0 are hyperelliptic):
- $y^2=x^3+187 x+187$
- $y^2=x^3+105 x+105$
- $y^2=x^3+7 x+7$
- $y^2=x^3+34 x+63$
- $y^2=x^3+8 x+8$
- $y^2=x^3+12 x+132$
- $y^2=x^3+191 x+235$
- $y^2=x^3+117 x+117$
- $y^2=x^3+158 x+158$
- $y^2=x^3+309 x+309$
- $y^2=x^3+271 x+182$
- $y^2=x^3+50 x+239$
- $y^2=x^3+220 x+220$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{311}$.
Endomorphism algebra over $\F_{311}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-1019}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.311.p | $2$ | (not in LMFDB) |