Properties

Label 1.311.ap
Base field $\F_{311}$
Dimension $1$
$p$-rank $1$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{311}$
Dimension:  $1$
L-polynomial:  $1 - 15 x + 311 x^{2}$
Frobenius angles:  $\pm0.360173519252$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-1019}) \)
Galois group:  $C_2$
Jacobians:  $13$
Isomorphism classes:  13

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $297$ $97119$ $30090852$ $9354987675$ $2909387257227$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $297$ $97119$ $30090852$ $9354987675$ $2909387257227$ $904820244389424$ $281399112441812277$ $87515123964855189075$ $27217203547889923134732$ $8464550303317480046237079$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 13 curves (of which 0 are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{311}$.

Endomorphism algebra over $\F_{311}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-1019}) \).

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
1.311.p$2$(not in LMFDB)