Invariants
| Base field: | $\F_{311}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 - 6 x + 311 x^{2}$ |
| Frobenius angles: | $\pm0.445586276780$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-302}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $12$ |
| Isomorphism classes: | 12 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $306$ | $97308$ | $30085614$ | $9354801888$ | $2909387449026$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $306$ | $97308$ | $30085614$ | $9354801888$ | $2909387449026$ | $904820328207900$ | $281399113358689086$ | $87515123943652990848$ | $27217203547320728159634$ | $8464550303318504032520028$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 12 curves (of which 0 are hyperelliptic):
- $y^2=x^3+86 x+86$
- $y^2=x^3+113 x+113$
- $y^2=x^3+119 x+119$
- $y^2=x^3+167 x+167$
- $y^2=x^3+97 x+134$
- $y^2=x^3+18 x+198$
- $y^2=x^3+301 x+201$
- $y^2=x^3+210 x+210$
- $y^2=x^3+70 x+148$
- $y^2=x^3+264 x+264$
- $y^2=x^3+260 x+260$
- $y^2=x^3+62 x+60$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{311}$.
Endomorphism algebra over $\F_{311}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-302}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.311.g | $2$ | (not in LMFDB) |