# Properties

 Label 1.307.abj Base Field $\F_{307}$ Dimension $1$ Ordinary Yes $p$-rank $1$ Principally polarizable Yes Contains a Jacobian Yes

## Invariants

 Base field: $\F_{307}$ Dimension: $1$ L-polynomial: $1 - 35 x + 307 x^{2}$ Frobenius angles: $\pm0.0157394140338$ Angle rank: $1$ (numerical) Number field: $$\Q(\sqrt{-3})$$ Galois group: $C_2$ Jacobians: 1

This isogeny class is simple and geometrically simple.

## Newton polygon

This isogeny class is ordinary.

 $p$-rank: $1$ Slopes: $[0, 1]$

## Point counts

This isogeny class contains the Jacobians of 1 curves, and hence is principally polarizable:

 $r$ 1 2 3 4 5 6 7 8 9 10 $A(\F_{q^r})$ 273 93639 28923804 8882689179 2727039115983 837201936379536 257021010504305229 78905450501247954675 24223973308635053912868 7436759805832416306577239

 $r$ 1 2 3 4 5 6 7 8 9 10 $C(\F_{q^r})$ 273 93639 28923804 8882689179 2727039115983 837201936379536 257021010504305229 78905450501247954675 24223973308635053912868 7436759805832416306577239

## Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{307}$
 The endomorphism algebra of this simple isogeny class is $$\Q(\sqrt{-3})$$.
All geometric endomorphisms are defined over $\F_{307}$.

## Base change

This is a primitive isogeny class.

## Twists

Below are some of the twists of this isogeny class.
 Twist Extension Degree Common base change 1.307.bj $2$ (not in LMFDB) 1.307.q $3$ (not in LMFDB) 1.307.t $3$ (not in LMFDB)
Below is a list of all twists of this isogeny class.
 Twist Extension Degree Common base change 1.307.bj $2$ (not in LMFDB) 1.307.q $3$ (not in LMFDB) 1.307.t $3$ (not in LMFDB) 1.307.at $6$ (not in LMFDB) 1.307.aq $6$ (not in LMFDB)