Invariants
| Base field: | $\F_{17^{2}}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 + 8 x + 289 x^{2}$ |
| Frobenius angles: | $\pm0.575605336838$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-273}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $8$ |
| Isomorphism classes: | 8 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $298$ | $84036$ | $24131146$ | $6975660288$ | $2015996534218$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $298$ | $84036$ | $24131146$ | $6975660288$ | $2015996534218$ | $582622244237124$ | $168377825742183082$ | $48661191880179483648$ | $14063084452267800027754$ | $4064231406644667776324676$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 8 curves (of which 0 are hyperelliptic):
- $y^2=x^3+a^{238} x+a^{238}$
- $y^2=x^3+a^{190} x+a^{191}$
- $y^2=x^3+a^{30} x+a^{31}$
- $y^2=x^3+a^{14} x+a^{14}$
- $y^2=x^3+a^{257} x+a^{257}$
- $y^2=x^3+a^{179} x+8$
- $y^2=x^3+a^{49} x+a^{49}$
- $y^2=x^3+a^{131} x+a^{132}$
where $a$ is a root of the Conway polynomial.
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{17^{2}}$.
Endomorphism algebra over $\F_{17^{2}}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-273}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.289.ai | $2$ | (not in LMFDB) |