Invariants
| Base field: | $\F_{17^{2}}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 + 5 x + 289 x^{2}$ |
| Frobenius angles: | $\pm0.546980662974$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-1131}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $8$ |
| Isomorphism classes: | 8 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $295$ | $84075$ | $24133360$ | $6975618675$ | $2015995810975$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $295$ | $84075$ | $24133360$ | $6975618675$ | $2015995810975$ | $582622267780800$ | $168377825854504015$ | $48661191870362103075$ | $14063084452297964026480$ | $4064231406647954404426875$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 8 curves (of which 0 are hyperelliptic):
- $y^2=x^3+a^{85} x+a^{85}$
- $y^2=x^3+a^5 x+a^5$
- $y^2=x^3+a^{124} x+a^{125}$
- $y^2=x^3+a^{60} x+a^{61}$
- $y^2=x^3+a^{62} x+a^{62}$
- $y^2=x^3+a^{170} x+a^{170}$
- $y^2=x^3+a^{190} x+a^{190}$
- $y^2=x^3+a^{10} x+a^{10}$
where $a$ is a root of the Conway polynomial.
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{17^{2}}$.
Endomorphism algebra over $\F_{17^{2}}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-1131}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.289.af | $2$ | (not in LMFDB) |