Properties

Label 1.289.f
Base field $\F_{17^{2}}$
Dimension $1$
$p$-rank $1$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{17^{2}}$
Dimension:  $1$
L-polynomial:  $1 + 5 x + 289 x^{2}$
Frobenius angles:  $\pm0.546980662974$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-1131}) \)
Galois group:  $C_2$
Jacobians:  $8$
Isomorphism classes:  8

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $295$ $84075$ $24133360$ $6975618675$ $2015995810975$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $295$ $84075$ $24133360$ $6975618675$ $2015995810975$ $582622267780800$ $168377825854504015$ $48661191870362103075$ $14063084452297964026480$ $4064231406647954404426875$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 8 curves (of which 0 are hyperelliptic):

where $a$ is a root of the Conway polynomial.

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{17^{2}}$.

Endomorphism algebra over $\F_{17^{2}}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-1131}) \).

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
1.289.af$2$(not in LMFDB)