Invariants
| Base field: | $\F_{283}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 + 6 x + 283 x^{2}$ |
| Frobenius angles: | $\pm0.557069938054$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-274}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $12$ |
| Isomorphism classes: | 12 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $290$ | $80620$ | $22660310$ | $6414127200$ | $1815234266450$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $290$ | $80620$ | $22660310$ | $6414127200$ | $1815234266450$ | $513710723280460$ | $145380127868953190$ | $41142576390307516800$ | $11643349119166559596610$ | $3295067800662318736485100$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 12 curves (of which 0 are hyperelliptic):
- $y^2=x^3+123 x+123$
- $y^2=x^3+265 x+247$
- $y^2=x^3+176 x+176$
- $y^2=x^3+44 x+44$
- $y^2=x^3+169 x+55$
- $y^2=x^3+125 x+250$
- $y^2=x^3+280 x+277$
- $y^2=x^3+266 x+249$
- $y^2=x^3+214 x+214$
- $y^2=x^3+238 x+238$
- $y^2=x^3+268 x+268$
- $y^2=x^3+74 x+74$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{283}$.
Endomorphism algebra over $\F_{283}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-274}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.283.ag | $2$ | (not in LMFDB) |