Invariants
| Base field: | $\F_{283}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 + x + 283 x^{2}$ |
| Frobenius angles: | $\pm0.509462172837$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-1131}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $8$ |
| Isomorphism classes: | 8 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $285$ | $80655$ | $22664340$ | $6414088875$ | $1815232560675$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $285$ | $80655$ | $22664340$ | $6414088875$ | $1815232560675$ | $513710746356240$ | $145380128436289185$ | $41142576379585369875$ | $11643349119007999129740$ | $3295067800666589719043775$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 8 curves (of which 0 are hyperelliptic):
- $y^2=x^3+58 x+58$
- $y^2=x^3+5 x+10$
- $y^2=x^3+270 x+270$
- $y^2=x^3+156 x+29$
- $y^2=x^3+83 x+83$
- $y^2=x^3+48 x+48$
- $y^2=x^3+170 x+57$
- $y^2=x^3+236 x+236$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{283}$.
Endomorphism algebra over $\F_{283}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-1131}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.283.ab | $2$ | (not in LMFDB) |