Invariants
| Base field: | $\F_{283}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 - 25 x + 283 x^{2}$ |
| Frobenius angles: | $\pm0.233379450635$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-3}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $5$ |
| Isomorphism classes: | 5 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $259$ | $80031$ | $22670788$ | $6414404619$ | $1815234494269$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $259$ | $80031$ | $22670788$ | $6414404619$ | $1815234494269$ | $513710715715344$ | $145380128282952703$ | $41142576380327368275$ | $11643349118745789552604$ | $3295067800661307805392111$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 5 curves (of which 0 are hyperelliptic):
- $y^2=x^3+105 x+210$
- $y^2=x^3+22 x+22$
- $y^2=x^3+52 x+104$
- $y^2=x^3+235 x+235$
- $y^2=x^3+5$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{283}$.
Endomorphism algebra over $\F_{283}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}) \). |
Base change
This is a primitive isogeny class.