Invariants
| Base field: | $\F_{283}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 - 24 x + 283 x^{2}$ |
| Frobenius angles: | $\pm0.247187928898$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-139}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $12$ |
| Isomorphism classes: | 12 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $260$ | $80080$ | $22671740$ | $6414408000$ | $1815234149300$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $260$ | $80080$ | $22671740$ | $6414408000$ | $1815234149300$ | $513710704146640$ | $145380128088959660$ | $41142576379256352000$ | $11643349118786710647140$ | $3295067800662798168408400$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 12 curves (of which 0 are hyperelliptic):
- $y^2=x^3+193 x+193$
- $y^2=x^3+87 x+87$
- $y^2=x^3+79 x+79$
- $y^2=x^3+221 x+159$
- $y^2=x^3+141 x+282$
- $y^2=x^3+2 x+4$
- $y^2=x^3+92 x+184$
- $y^2=x^3+260 x+260$
- $y^2=x^3+153 x+23$
- $y^2=x^3+245 x+245$
- $y^2=x^3+210 x+210$
- $y^2=x^3+217 x+151$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{283}$.
Endomorphism algebra over $\F_{283}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-139}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.283.y | $2$ | (not in LMFDB) |