Invariants
| Base field: | $\F_{283}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 - 11 x + 283 x^{2}$ |
| Frobenius angles: | $\pm0.393982137132$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-1011}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $12$ |
| Isomorphism classes: | 12 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $273$ | $80535$ | $22673196$ | $6414210075$ | $1815229479063$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $273$ | $80535$ | $22673196$ | $6414210075$ | $1815229479063$ | $513710682947280$ | $145380129146222061$ | $41142576403448922675$ | $11643349118919977778228$ | $3295067800659552703961175$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 12 curves (of which 0 are hyperelliptic):
- $y^2=x^3+151 x+151$
- $y^2=x^3+67 x+67$
- $y^2=x^3+183 x+83$
- $y^2=x^3+82 x+82$
- $y^2=x^3+3 x+3$
- $y^2=x^3+75 x+150$
- $y^2=x^3+42 x+84$
- $y^2=x^3+8 x+16$
- $y^2=x^3+51 x+51$
- $y^2=x^3+117 x+117$
- $y^2=x^3+250 x+250$
- $y^2=x^3+258 x+233$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{283}$.
Endomorphism algebra over $\F_{283}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-1011}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.283.l | $2$ | (not in LMFDB) |