Invariants
| Base field: | $\F_{283}$ | 
| Dimension: | $1$ | 
| L-polynomial: | $1 - 2 x + 283 x^{2}$ | 
| Frobenius angles: | $\pm0.481067280098$ | 
| Angle rank: | $1$ (numerical) | 
| Number field: | \(\Q(\sqrt{-282}) \) | 
| Galois group: | $C_2$ | 
| Jacobians: | $8$ | 
| Isomorphism classes: | 8 | 
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ | 
| Slopes: | $[0, 1]$ | 
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | 
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $282$ | $80652$ | $22666878$ | $6414092256$ | $1815231372042$ | 
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ | 
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $282$ | $80652$ | $22666878$ | $6414092256$ | $1815231372042$ | $513710744219244$ | $145380128902232142$ | $41142576380649414528$ | $11643349118840863005114$ | $3295067800666125473464332$ | 
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 8 curves (of which 0 are hyperelliptic):
- $y^2=x^3+11 x+11$
 - $y^2=x^3+108 x+216$
 - $y^2=x^3+30 x+60$
 - $y^2=x^3+226 x+169$
 - $y^2=x^3+163 x+163$
 - $y^2=x^3+142 x+1$
 - $y^2=x^3+124 x+124$
 - $y^2=x^3+89 x+89$
 
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{283}$.
Endomorphism algebra over $\F_{283}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-282}) \). | 
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change | 
|---|---|---|
| 1.283.c | $2$ | (not in LMFDB) |