Invariants
| Base field: | $\F_{193}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 + 10 x + 193 x^{2}$ |
| Frobenius angles: | $\pm0.617191880249$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-42}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $12$ |
| Isomorphism classes: | 12 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $204$ | $37536$ | $7184268$ | $1387480704$ | $267786181644$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $204$ | $37536$ | $7184268$ | $1387480704$ | $267786181644$ | $51682531983264$ | $9974730219157068$ | $1925122955640691200$ | $371548729906766878284$ | $71708904872819600927136$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 12 curves (of which 0 are hyperelliptic):
- $y^2=x^3+183 x+183$
- $y^2=x^3+133 x+133$
- $y^2=x^3+134 x+134$
- $y^2=x^3+165 x+165$
- $y^2=x^3+51 x+51$
- $y^2=x^3+176 x+176$
- $y^2=x^3+140 x+140$
- $y^2=x^3+70 x+70$
- $y^2=x^3+63 x+122$
- $y^2=x^3+118 x+11$
- $y^2=x^3+62 x+62$
- $y^2=x^3+84 x+34$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{193}$.
Endomorphism algebra over $\F_{193}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-42}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.193.ak | $2$ | (not in LMFDB) |