Invariants
| Base field: | $\F_{179}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 + 20 x + 179 x^{2}$ |
| Frobenius angles: | $\pm0.768714908378$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-79}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $10$ |
| Isomorphism classes: | 10 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $200$ | $32000$ | $5732600$ | $1026688000$ | $183765241000$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $200$ | $32000$ | $5732600$ | $1026688000$ | $183765241000$ | $32894117408000$ | $5888046362685400$ | $1053960287058432000$ | $188658891737653425800$ | $33769941616079424800000$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 10 curves (of which 0 are hyperelliptic):
- $y^2=x^3+164 x+149$
- $y^2=x^3+83 x+83$
- $y^2=x^3+147 x+115$
- $y^2=x^3+42 x+42$
- $y^2=x^3+129 x+79$
- $y^2=x^3+103 x+27$
- $y^2=x^3+36 x+72$
- $y^2=x^3+60 x+60$
- $y^2=x^3+121 x+63$
- $y^2=x^3+59 x+118$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{179}$.
Endomorphism algebra over $\F_{179}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-79}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.179.au | $2$ | (not in LMFDB) |