Invariants
| Base field: | $\F_{179}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 - 14 x + 179 x^{2}$ |
| Frobenius angles: | $\pm0.324736367198$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-130}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $4$ |
| Isomorphism classes: | 4 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $166$ | $32204$ | $5740114$ | $1026663520$ | $183765672086$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $166$ | $32204$ | $5740114$ | $1026663520$ | $183765672086$ | $32894102124524$ | $5888046206296994$ | $1053960289510250880$ | $188658891737742834886$ | $33769941616545305475404$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 4 curves (of which 0 are hyperelliptic):
- $y^2=x^3+126 x+73$
- $y^2=x^3+164 x+164$
- $y^2=x^3+154 x+154$
- $y^2=x^3+128 x+77$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{179}$.
Endomorphism algebra over $\F_{179}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-130}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.179.o | $2$ | (not in LMFDB) |